

PHIL 50-Introduction to Logic

Marcello Di Bello, Stanford University, Spring 2014

Week 2 - Monday Class

Today we Begin with the Simplest Logical System: Propositional Logic

Syntax: rules to build well-formed formulas

Semantics: rules to assign (truth) values to these formulas

SYNTAX of the Propositional Language

Ingredients of the Propositional Language

(1) Basic (atomic) statements (propositions):

$$
p, q, r, \ldots
$$

(2) Operators to build more statements:

$"$ not $\ldots "$	becomes	$\neg \ldots$
$" \ldots$ and $\ldots "$	becomes $\ldots \wedge \ldots$	
$" \ldots$ or $\ldots "$	becomes $\ldots \vee \ldots$	
"if ... then"	becomes $\ldots \longrightarrow \ldots$	
$" \ldots$ if and only if ..."	becomes $\ldots \leftrightarrow \ldots$	

Well-Formed Formulas

The language \mathcal{L}_{P} is a set of formulas satisfying:
(1) All the basic propositions are in \mathcal{L}_{P} :

$$
\boldsymbol{p} \in \mathcal{L}_{\mathrm{P}}, \quad \boldsymbol{q} \in \mathcal{L}_{\mathrm{P}}, \quad r \in \mathcal{L}_{\mathrm{P}}, \quad \ldots
$$

(2) If $\varphi \in \mathcal{L}_{\mathrm{P}}$ and $\psi \in \mathcal{L}_{\mathrm{P}}$, then

$$
\begin{array}{lll}
\neg \varphi \in \mathcal{L}_{\mathrm{P}}, & (\varphi \wedge \psi) \in \mathcal{L}_{\mathrm{P}}, & (\varphi \rightarrow \psi) \in \mathcal{L}_{\mathrm{P}}, \\
& (\varphi \vee \psi) \in \mathcal{L}_{\mathrm{P}}, & (\varphi \leftrightarrow \psi) \in \mathcal{L}_{\mathrm{P}} .
\end{array}
$$

(3) Nothing else is in \mathcal{L}_{P}.

In practice, we will avoid parenthesis if they are not necessary.

Formulas as Trees

The construction of a formula can be seen as building a tree.

Formulas as Trees

The construction of a formula can be seen as building a tree.

The formulas within a grey rectangle are more complex (or molecular) formulas

Formulas Are Defined Inductively or Recursively

What does
that mean?

Inductive (or Recursive) Definitions (1)

Inductive definition of the set of natural numbers

Base case:
1 is a natural number

Inductive case:
If \mathbf{n} is a natural number, $\mathbf{n}+\mathbf{1}$ is a natural number

Final clause:
Nothing else is a natural number

Inductive (or Recursive) Definitions (2)

Inductive definition of the set of formulas of Lp

Base case:
$p, q, r \ldots$ are formulas of $L p$.

Inductive case(s):
If ϕ formula of $\mathbf{L p}$, then $\neg \phi$ is a formula of $L \mathbf{p}$
If ϕ and ψ are formulas of $L p$, then $\phi \wedge \psi$ is a formula of $L p$
.... and so on for the other connectives

Final clause:
Nothing else is a formula of Lp

Inductive (or Recursive) Definitions (3)

Inductive (or recursive) definitions are somewhat circular in the sense that they define something in terms of itself.

Look at the inductive case(s):
A natural number is defined in terms of a natural number.
A formula is defined in terms of a formula.

But there are no vicious circles because of the base case.

Recursion

 in the Grammar of Natural Language Sentences

The Recursive Pizza

...and The Recursive Mind

The Recursive Mind

The Origins of Human Languag, Thought, and Civilization

With a new foreword by the author Michael C. Corballis

SEMANTICS of the Propositional

 Language
Evaluating Formulas

How do we know if a given formula φ is true or false?

- We need the truth-values of the basic propositions $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots$ that appear in φ.
- We need to know the meaning of $\neg, \wedge, \vee, \rightarrow$ and \leftrightarrow.

Valuation Functions

This encodes the principe of bivalence. For every atomic propositions is assigned value 1 or 0 .

Valuation. Let $\mathrm{P}=\{\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots\}$ be a set of atomic propositions. A valuation V from P to $\{0,1\}$ assigns to each element of P a unique truth-value.

Example: assume $\mathrm{P}=\{p, q\}$.
There are four different valuations (four different situations):

$$
\begin{array}{ll}
\hline V_{1}(\boldsymbol{p})=1 & V_{1}(\boldsymbol{q})=1 \\
\hline V_{2}(\boldsymbol{p})=1 & V_{2}(\boldsymbol{q})=0 \\
\hline V_{3}(\boldsymbol{p})=0 & V_{3}(\boldsymbol{q})=1 \\
\hline V_{4}(\boldsymbol{p})=0 & V_{4}(\boldsymbol{q})=0 \\
\hline
\end{array}
$$

How MANY Valuations Functions?

With one atomic proposition, there are two possible valuations.

With two atomic propositions, there are four possible valuations.

With three

 atomic propositions, there are $\mathbf{2}^{\wedge} 3=8$ possible valuations.With \mathbf{n} atomic propositions, there are $\mathbf{2}^{\wedge} \mathbf{n}$ possible valuations.

So Far We Have Only Assigned Truth Values to Atomic Formulas

How can we assign truth values to more complex formulas?

Extending V for Negation

Use 1 for true, and 0 for false.
For negation \neg

φ	$\neg \varphi$
1	0
0	1

or, in a shorter format:

\neg	φ
$\mathbf{0}$	1
$\mathbf{1}$	0

Negation behaves
like the 1-place function
$1-x=y$.

Extending V for

Conjunction and Disjunction

For conjunction \wedge

For disjunction \vee

George Boole's Algebra of Logic (mid 19th century)

* Statements have value 0 or 1
\% "and" is understood as multiplication
\% "not" is understood as subtraction
\because "or" is understood as Boolean addition (define Boolean addition as $1+1=1 ; 1+0=1$; $0+1=1$; and $0=0+0$)

Evaluating One Formula

Relative to One Valuation

$$
V: \left.\begin{array}{ccccc}
(\neg & p) & \wedge & q \\
1 & 0 & 1 & 1
\end{array} \quad \right\rvert\, V \models(\neg p) \wedge q
$$

First, assign a truth value to \mathbf{p} and \mathbf{q}; then to $(\neg \mathbf{p})$; and finally to $(\neg \mathbf{p}) \wedge \mathbf{q}$.

The expression

$$
V \vDash(\neg p) \wedge q
$$ V makes true the formula $(\neg p) \wedge q$

Go from the simplest to the more complex.

Logic Gates

AND gate

NOT gate

Logic Circuits and Formulas

$(\neg A) \wedge B$

$(A \vee B) \wedge(\neg B)$

Adding 2+3

Two Standpoints:

Language and Circuits

Conjunction, Disjunction, and
Negation...What About Implication?

For
next
class....

