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Today we Begin with the Simplest 
Logical System: Propositional Logic

Syntax: rules to build 
well-formed formulas!

Semantics: rules to 
assign (truth) values 
to these formulas



SYNTAX of the Propositional Language



  Ingredients of the Propositional LanguageThe Language of Propositional Logic

Ingredients of the propositional language

1 Basic (atomic) statements (propositions):

p, q, r, . . .

2 Operators to build more statements:

“not . . . ” becomes ¬ . . .

“. . . and . . .” becomes . . . ^ . . .

“. . . or . . .” becomes . . . _ . . .

“if . . . then” becomes . . . ! . . .

“ . . . if and only if . . .” becomes . . . $ . . .
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  Well-Formed Formulas The Language of Propositional Logic

The propositional language

The language L
P

is a set of formulas satisfying:
1 All the basic propositions are in L

P

:

p 2 L
P

, q 2 L
P

, r 2 L
P

, . . .

2 If ' 2 L
P

and  2 L
P

, then
¬' 2 L

P

, (' ^  ) 2 L
P

, (' !  ) 2 L
P

,
(' _  ) 2 L

P

, (' $  ) 2 L
P

.

3 Nothing else is in L
P

.

In practice, we will avoid parenthesis if they are not necessary.
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  Formulas as Trees The Language of Propositional Logic

Constructing formulas

The construction of a formula can be seen as building a tree.

((¬p _ q) ! r)((¬p _ q) ! r)

!

((¬p _ q) ! r)

!

(¬p _ q) r

((¬p _ q) ! r)

!

(¬p _ q)

_

r

((¬p _ q) ! r)

!

(¬p _ q)

_

¬p q

r

((¬p _ q) ! r)

!

(¬p _ q)

_

¬p

¬

q

r

((¬p _ q) ! r)

!

(¬p _ q)

_

¬p

¬

p

q

r
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!
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!

¬(p _ q) r
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  Formulas as Trees

The 
formulas that 
are circled in 
red are basic 
(or atomic) 
formulas The formulas 

within a grey 
rectangle are 

more complex!
(or molecular) 

formulas



Formulas Are Defined Inductively 
or Recursively

What does 
that mean?



Inductive (or Recursive) Definitions (1) 

Inductive definition of the set of natural numbers 
!
Base case: !
! 1 is a natural number!
!
Inductive case: !
! If n is a natural number, n+1 is a natural number!
!
Final clause:!
! Nothing else is a natural number!



Inductive (or Recursive) Definitions (2)

Inductive definition of the set of formulas of Lp 
!
Base case: !
! p, q, r … are formulas of Lp.!
!
Inductive case(s): !
! If φ formula of Lp, then ¬φ is a formula of Lp!
! If φ and ψ are formulas of Lp, then φ ∧ ψ is a formula of Lp!
! …. and so on for the other connectives!
!
Final clause:!
! Nothing else is a formula of Lp!

φ  and ψ  are not 
formulas; they are 

schemata for formulas. 
This “trick” makes the 

definition possible. 



Inductive (or Recursive) Definitions (3)

Inductive (or recursive) definitions are somewhat circular in 
the sense that they define something in terms of itself.!
!
Look at the inductive case(s):!
! A natural number is defined in terms of a natural number. !
! A formula is defined in terms of a formula.!
!
But there are no vicious circles because of the base case. 



Recursion 

in the 

Grammar 

of Natural 

Language 

Sentences

A sentence can 
be embedded 
within a sentence 
and so on …



The Recursive Pizza



01

…and The 
Recursive Mind



SEMANTICS of the Propositional 
Language



  Evaluating FormulasSemantic Situations: Truth Tables

Evaluating formulas

How do we know if a given formula ' is true or false?

We need the truth-values of the basic propositions p, q, r, . . .

that appear in '.
We need to know the meaning of ¬, ^, _, ! and $.
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Semantic Situations: Truth Tables

Valuations

Valuation. Let P = {p, q, r, . . .} be a set of atomic propositions.
A valuation V from P to {0, 1} assigns to each element of P a unique
truth-value.

Example: assume P = {p, q}.
There are four di↵erent valuations (four di↵erent situations):

V1(p) = 1 V1(q) = 1

V2(p) = 1 V2(q) = 0

V3(p) = 0 V3(q) = 1

V4(p) = 0 V4(q) = 0

How many for P = {p}? How many for P = {p, q, r}?
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  Valuation Functions This encodes the 
principe of bivalence. For 

every atomic propositions is 
assigned value 1 or 0.



How MANY Valuations Functions?

With one 
atomic 
proposition, 
there are two 
possible 
valuations.

With two 
atomic 
propositions, 
there are four 
possible 
valuations.

With three 
atomic 
propositions, 
there are 2^3=8 
possible 
valuations.

With n atomic 
propositions, 
there are 2^n 
possible 
valuations.



So Far We Have Only Assigned 
Truth Values to Atomic Formulas

How can we assign 
truth values to more 
complex formulas?



  Extending V for NegationSemantic Situations: Truth Tables

Behaviour of the connectives (1)

Use 1 for true, and 0 for false.

For negation ¬

' ¬'

1 0

0 1

or, in a shorter format:

¬ '

0 1
1 0
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Negation behaves 
like the 1-place 

function !
 1-x=y.



Semantic Situations: Truth Tables

Behaviour of the connectives (2)

For conjunction ^

' ^  

1 1 1
1 0 0
0 0 1
0 0 0

For disjunction _

' _  

1 1 1
1 1 0
0 1 1
0 0 0
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  Extending V for  
  Conjunction and Disjunction 

Disjunction 
behaves like the 2-place 

functions  !
(x_1+x_2)-(x_1·x_2)=y!

and!
max(x_1, x_2)=y.

Conjunction 
behaves like the 2-place 

functions!
(x_1·x_2)=y !

and !
min(x_1, x_2)=y.
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George Boole’s Algebra 

of Logic (mid 19th century)

✤ Statements have value 0 or 1!

✤ “and” is understood as 
multiplication!

✤ “not” is understood as 
subtraction!

✤ “or” is understood as Boolean 
addition (define Boolean 
addition as 1+1=1; 1+0=1; 
0+1=1; and 0=0+0)



Semantic Situations: Truth Tables

Evaluating formulas in one situation

(¬ p) ^ q
V : 1 0 1 1 V |= (¬p) ^ q

(p ^ (p ! q)) ! q

V : 1 0 1 0 0 1 0 V |= (p ^ (p ! q)) ! q

¬ ¬ p

V : 0 1 0 V 6|= ¬¬p

(p ! q) _ (q ! p)

V : 0 1 1 1 1 0 0 V |= (p ! q) _ (q ! p)
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Evaluating One Formula  
  Relative to One Valuation

The order 
matters:!

!
First, assign a truth value to p and 

q; then to (¬p); and finally to (¬p) ∧ q.!
!

Go from the simplest to the 
more complex.!

The expression !
!

V ⊨ (¬p) ∧ q!
 !

should be understood as saying that 
V makes true the formula (¬p) ∧ q !

!
Importantly, V ⊨ (¬p) ∧ q  is 

not a formula.



A  

B  
  Y

A  

B  
  Y

A    Y NOT gate

OR gate

AND gate

Logic Gates



Logic Circuits and Formulas

A  

  Y
B  

  Y

A  

B  

(¬A) ∧ B

(A ∨ B) ∧ (¬B)

A  

B  
  Y

AND

A  

B  
  Y

OR

A    Y

NOT
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Adding 2+3



Two Standpoints: 
     Language and Circuits

You can regard formulas as 
statements capable of being 
true or false, e.g. statements 
about how things are, who is 

guilty or innocent, etc. 

You can also 
regard formulas as 

representing circuits with 
inputs and outputs. The 

inputs are the values (0 or 1) of 
the atomic formulas and the 
output is the value (0 or 1) 

of the complex 
formula. 



Conjunction, Disjunction, and 
Negation…What About Implication?

For 
next 
class….


